
Online Incremental Learning of Manipulation Tasks
for Semi-Autonomous Teleoperation

Ioannis Havoutis1, Ajay Kumar Tanwani1,2, Sylvain Calinon1

Abstract— We present an approach for online incremental
learning of manipulation tasks. A Bayesian clustering algorithm
is used to build an online hidden semi-Markov model (HSMM)
that captures state transition and state duration probabilities
of demonstrated motions. Motions are then generated by
stochastically sampling from the learned model and tracked
using an infinite-horizon linear quadratic regulator (LQR), with
varying stiffness and damping characteristics learned from
the demonstrations. Our approach provides a compact skill
representation that is learned online and can be used in a semi-
autonomous teleoperation setting, where direct teleoperation is
infeasible due to large communication latency or failure. We
present a planar drawing example to highlight the flexibility
of our approach, and demonstrate how our solution can be
used for a hot-stabbing motion in an underwater teleoperation
scenario. We evaluate the performance of our approach over
multiple trials and report high accuracy and repeatability,
resulting to consistently successful hot-stabbing motions.

I. INTRODUCTION

Many useful robotics applications require performing tasks
in environments that are not friendly for humans. One typical
example is underwater activities, ranging from inspection
and maintenance of underwater cables and pipelines, to
underwater archaeology and marine biology. To this end
there has been a boom in underwater remotely operated
vehicles (ROVs) over the past few years. Nonetheless the cost
of using ROVs is still prohibitively high for wider adoption,
as currently ROV usage still requires substantial off-shore
support.

One of the main limiting factors is that a large off-
shore crew is required to supervise and teleoperate the ROV
directly from the support vessel. This is mainly due to
the need of online teleoperation, i.e. the operator receives
visual feedback from an array of cameras on the ROV and
accordingly uses a set of buttons, knobs and joysticks to
guide the motion of all, body and arm(s), degrees-of-freedom
(DoF) of the ROV. This cost can be reduced by moving
the support and teleoperation team to an on-shore facility
and communicating with the ROV remotely. Current satellite
communications technology suffers from large latencies and
deems traditional direct ROV teleoperation infeasible.

We are developing a novel teleoperation paradigm within
which no direct teleoperation of the ROVs’ DOFs is required
but control is locally handled (onboard) using a probabilistic
representation of task/skill primitives. Such a representation

1Idiap Research Institute, Martigny, Switzerland. {ioannis.havoutis,
ajay.tanwani, sylvain.calinon}@idiap.ch

2Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland.
This work was in part supported by the DexROV project through the EC

Horizon 2020 programme (Grant #635491).

Fig. 1. The Baxter robot being taught how to perform hot-stabbing motions.
The orange cylinder is a mock-up of the hot-stab plug while on the left a
mock-up of a hot-stab panel with three receptacles is set up. The inset image
shows a rendering of the underwater evaluation panel used in DexROV,
housing 3 plugged-in hot-stabs (with different handles) and 2 rotational
switches.

can adapt to changing task parameters and is robust against
intermittent communication. Within the DexROV project [1],
we are investigating an efficient encoding of manipulation
tasks that is learned via programming by demonstrations.

In our previous work [2], we proposed the use of a
task-parameterized semi-tied hidden semi-Markov model
(HSMM) for robustly learning robot manipulation tasks in
a batch manner. In this paper, we are interested in incre-
mentally building such model from demonstrated motions
using an online DP-Means algorithm [3], that generates
motion plans by stochastically sampling from the learned
model. The generated motion is tracked by an infinite-
horizon linear quadratic regulator (LQR) that yields smooth
trajectories with varying stiffness/compliance characteristics
learned from the demonstrations.

The main contribution of this work is the online and
incremental learning of HSMM motion representations that
can be used to encode manipulation tasks within a semi-
autonomous teleoperation scenario. We show how our system
can be used with a failing communication example and
evaluate the performance of a learned ROV task, reporting
averaged results over multiple trials. With our approach we
are able to add datapoints incrementally, without the need
to re-train the model in a batch fashion, and by discarding
the demonstration datapoints after observation. We show how
such skills can be learned and how this model can decouple
the local control from the teleoperation setup. In fact, with
our approach only a small set of model parameters needs to

GMM HMM HSMM

Fig. 2. Differences of transition representations in GMM, HMM and HSMM. The left graph shows three demonstrations represented as black dots, and
the Gaussian clusters (states) as colored ellipses (isocontours of one standard deviation). A GMM model encodes the structure of the motion but does not
model the transition between the states. An HMM uses transition and self-transition probabilities to model the state connectivity. Self-state transitions are
known to only poorly describe the probability that the system is expected to stay in one of the states. The HSMM model instead explicitly models the
state duration probabilities as Gaussian distributions, while keeping the transition probabilities between states.

be communicated from the operator side to the teleoperated
system. This makes the overall method robust to intermittent
communication and large latency.

The rest of the paper is structured as follows. In Section II
we discuss relevant and previous work. Section III describes
our approach of extending a Gaussian mixture model (GMM)
to an HSMM. We then present a planar drawing motion
example in Section IV, that highlights the advantages of
the proposed method. Section V presents our experimental
setup and Section VI describes our experimental trials for
teaching a Baxter robot to perform hot-stabbing motions, a
common routine task for underwater ROVs. In Section VI-A
we evaluate the performance of the learned hot-stabbing task,
reporting results averaged over multiple trials. Finally we
conclude our work with a discussion on our results followed
by an overview of future research directions.

II. RELATED WORK

A popular learning by demonstration (LbD) approach is
to use Dynamic Movement Primitives (DMPs) [4]. DMPs are
dynamical systems with simple convergence behaviour that
are coupled with a learned non-linear function that modulates
their output. This way, DMPs can provide adaptive motion
representations that are easy to implement. One drawback of
standard DMPs is that a sequence of radial basis activation
functions needs to be allocated manually (usually spread
equally in time with a shared variance), and that each DoF
of the system is separately described (synchronized by a
phase variable), sometimes leading to sets of DMPs that
have difficulty in capturing joint synergies if too few basis
functions are used.

An alternative LbD approach is to encode a motion in
a GMM and use Gaussian Mixture Regression (GMR) to
regenerate the motion. It was shown in [5] that a DMP can
be recast as a GMR problem (for a GMM with diagonal
covariance), and that its natural extension to a GMM with full
covariances can represent local coordination patterns. With
this probabilistic form of DMP, the basis functions can also
be learned from the demonstrations.

Hidden Markov Models (HMMs) have been used in

robotics in a number of approaches. For example Lee and
Ott proposed to combine HMM with GMR to cope with the
poor duration modeling properties of standard HMMs [6],
[7]. Similarly, Chan et al. used GMR and HMM as part
of a constrained manipulator visual servoing controller [8].
Bowen and Alterovitz presented a combination of an HMM
for task representation and a sampling-based motion planner
to produce (asymptotically) optimal plans [9]. Kulic et al.
used HMMs to incrementally group together human whole-
body motions, using hierarchical agglomerative clustering,
based on their relative distance in HMM space [10].

Often, the use of HMM-based approaches in robotics ap-
plications is limited by the simplistic state duration modeling
that HMMs provide. Other signal processing related disci-
plines, such as speech synthesis, have developed a number
of models that seek to model state duration information more
explicitly (for an overview see [11]). One such model is the
Hidden Semi-Markov Models (HSMM) [12]. Recently we
experimented with the use of HSMM in robot applications,
by contrasting it to a set of different graphical model based
approaches [13]. HSMMs are relevant for robot motion gen-
eration because they model the transitions and the durations
of state activations, thus providing a relative time instead
of a global time representation. In [2], we exploited this
local duration representation for autonomously learning and
reproducing in new situations the challenging manipulations
tasks of opening a valve and moving objects while avoiding
obstacles.

The approach that we propose in this paper for online
HSMM estimation draws parallels to the DP-means exten-
sion to HMM presented in [14]. There the authors present
a small-variance asymptotic analysis of the HMM and its
infinite-state Bayesian nonparametric extension. Our solution
is based on simpler assumptions that nonetheless work well
in practice for the underwater teleoperation application that
we consider.

III. APPROACH

We developed a method that leverages the advantages of
an online GMM building algorithm, namely the DP-means

Algorithm 1 Online hidden semi-Markov model learning
Input: < λ, γ >

procedure Online HSMM
1: Initialize K := 1, Nk := 1, {d, ck,k, µD

(old)

k , e := 0}
2: while new ξt is being added do
3: Compute dt,i = ‖ξt − µi‖2 i = 1 ...K
4: if mini dt,i > λ then
5: K := K + 1, πk := 1

t , µk := ξt, Σk := γI
6: else
7: qt = argmini dt,i
8: Update πqt ,µqt ,Σqt as described in [15]
9: end if

10: if qt = qt−1 then # (t > 1)
11: d := d+ 1
12: else
13: cqt−1,qt := cqt−1,qt + 1

14: aqt−1,qt := cqt−1,qt/
∑K
k=1 cqt−1,k

15: µDqt−1
:= µD

(old)

qt−1
+

(d−µD(old)

qt−1
)

Nqt

16: e := e+ (d− µD(old)

qt−1
)(d− µDqt−1

)

17: ΣDqt−1
:= e

(Nqt−1)
(Nqt > 1)

18: d := 0, Nqt := Nqt + 1, µD
(old)

qt−1
:= µDqt−1

19: end if
20: end while
21: return θ∗ = {πi,µi,Σi, {ai,j}Kj=1, µ

D
i ,Σ

D
i }Ki=1

clustering [3]. This uses insights from Bayesian nonparamet-
ric approaches to arrive to a hard clustering approach that is
online and incrementally built, and scales to large datasets.

In the interest of space, we only provide a brief overview
of DP-means clustering. The interested reader can refer to
[3] for further details. A GMM is incrementally built by
incorporating datapoints ξt ∈ RD, where D is the dimen-
sionality of the problem at hand. For each new datapoint,
the squared Euclidean distance to the GMM cluster centers
is calculated. If this distance is greater than a threshold based
on the size/range of the motion, a new cluster is added to
the GMM. If the distance to the nearest cluster is lower
than the threshold, then the cluster components, µi and Σi

(and cluster prior πi), are updated according to the MAP
estimate described in [15]. This results in a model that is
incrementally expanded with more clusters (Gaussians) if
the need arises, can be incrementally built – for example
in a number of demonstrations – and is built online, i.e.
no batch processing step is needed, while no data is stored.
This makes the approach particularly appealing for large and
incrementally growing sets of demonstrations.

A. Extension to HMM

Overall a GMM is built where each cluster, qi with
i = 1 ...K, is described by a single Gaussian distribution
N (µi,Σi). In the context of HMM, each cluster (or node)
is a Gaussian component qi in the model, that encodes the
evolution of a set of variables ξt.

An HMM considers transition probabilities between the K

Gaussians, that form a K×K transition probability matrix,
where each element ai,j in the matrix represents the proba-
bility to move to the state qj , while currently being in state qi,
and Πi are initial emission probabilities. The parameters of
an HMM are described by Θ = {{ai,j}Kj=1,Πi,µi,Σi}Ki=1,
and can be estimated with an EM algorithm, see for example
[11], in case data is presented in batches. Here, we instead
optimize the parameters online from the DP-means estimate.

Each time a new demonstration is presented, for each
datapoint that is added to the GMM, we estimate to which
Gaussian component it most likely belongs. This way, for
each datapoint ξt we can estimate the state qj and the
previous state qi. To build up the transition probabilities, ai,j ,
we keep a matrix ci,j , c ∈ RK×K , that counts the number
of state transitions that are not self-transitory.

∀{ξt−1, ξt} ⇒ ci,j = ci,j + 1, i 6= j

ai,j =
ci,j∑K
j=1 ci,j

.

The initial emission probabilities Πi are estimated in a
similar manner, by keeping track of the starting component
of each demonstration sequence.

B. Extension to HSMM

When computing the transition probabilities earlier, we
only kept track of the non self-transitory instances. This is
because in HMM, the self-transition probabilities ai,i only
allow a crude implicit model of the number of iterations
that we can expect to stay in a given state qi before
moving to another state. Indeed, the probability of staying
d consecutive time steps in a state i follows the geometric
distribution (see for example [11]) P(d) = ad−1i,i (1 − ai,i),
decreasing exponentially with time. This is restrictive for
motion generation as both spatial and temporal information
is important for our task [13].

Variable duration models such as the HSMM do not use
the self-transition probabilities ai,i of the HMM, and replaces
it with an explicit model (non-parametric or parametric)
of the relative time during which one stays in each state
[16], [12]. For example, a univariate Gaussian distribution
N (µDi ,Σ

D
i) can be used to model this duration.

In our approach, similarly to the transition probabilities
calculation, we can bypass the computationally expensive
batch training procedure and replace it with an online
approach by keeping statistics over the state transitions.
This way, as demonstrations are being performed and the
underlying GMM is being built, we keep track of each state
duration and accordingly update the statistics of each state.
This is done using a running statistics method to compute the
mean and variance for each state duration. This requires that
we only keep track of the total number of samples while we
incrementally add new values. Consequently, our approach
does not need to store any datapoint while all learning is
performed online. The overall online learning algorithm is
detailed in Alg. 1.

(a) Demonstrations (b) Sampled motions (c) Incremental additions (d) Single motion

Fig. 3. A planar drawing example that highlights the flexibility of our approach. a) Four motions are provided as demonstrations, spelling ‘IROS’. The
position of the numbers indicates the start of each demonstration. b) The learned model is sampled and generated motions are shown in blue. c) Three
new demonstrations are incrementally added to the model, effectively joining the previous demonstrations to construct a single motion. d) A single motion
can now be sampled, that was build by incrementally incorporating the set of demonstrations. The whole movement is learned by piecewise demonstration
without having to rely on time re-alignment preprocessing such as dynamic time warping (DTW).

C. Sampling

Sampling from the model can take two forms: 1) deter-
ministic, where the most likely sequence of states is sampled
and remains unchanged in successive sampling trials, and
2) stochastic, where the sequence of states is sampled in
a probabilistic manner. By stochastic sampling, motions that
contain different options, i.e., motions that do not evolve only
on a single path – for example [17], can also be represented.

In this resulting HSMM, the probability of a datapoint ξt
to be in state i at time step t given the partial observation
{ξ1, ξ2, ... , ξt} can be recursively computed with (see for
example [11])

αHSMM
i,t =

K∑
j=1

dmax∑
d=1

αHSMM
j,t−d aj,i NDd,i

t∏
s=t−d+1

Ns,i, where

NDd,i = N (d|µDi ,ΣDi) and Ns,i = N
(
ξs| µi,Σi

)
.

For t<dmax, the initialization is given by

αHSMM
i,1 = ΠiND1,i N1,i,

αHSMM
i,2 = ΠiND2,i

2∏
s=1

Ns,i +

K∑
j=1

αHSMM
j,1 aj,iND1,iN2,i,

αHSMM
i,3 = ΠiND3,i

3∏
s=1

Ns,i +

K∑
j=1

2∑
d=1

αHSMM
j,3−d aj,iNDd,i

3∏
s=4−d

Ns,i,

etc., which corresponds to the update rule

αHSMM
i,t = ΠiNDt,i

t∏
s=1

Ns,i +

K∑
j=1

t−1∑
d=1

αHSMM
j,t−daj,iNDd,i

t∏
s=t−d+1

Ns,i.

(1)
Wiht this representation, a generative process can be

constructed by setting equal observation probability Ns,i =
1∀i. Note that the above iterations can be reformulated for
efficient computation, see [12], [18] for details.

D. Motion Generation

By stochastically sampling from the HSMM for T
time steps, we obtain a sequence of states to be visited
q1 ... qT . The step-wise reference trajectory N (µ̂qt , Σ̂qt)
can be smoothly tracked by using an infinite-horizon linear

quadratic regulator with a double integrator system [19]. The
cost function to minimize at each time step t0 is given by

c(ξt,ut) =

∞∑
t=t0

(ξt − µ̂qt0)>Qt0(ξt − µ̂qt0) +u>tRut, (2)

where ut ∈ Rm is the control input of the system. Setting
Qt = Σ̂−1qt ,R � 0, ξt = [xt

> ẋ>t]
>, µ̂qt = [µ̂x

>

t µ̂ẋ
>

t]> with
x, ẋ representing the position and velocity of the system, the
optimal control input u∗t obtained by solving the algebraic
Riccati equation is given by

u∗t = KP
t (µ̂xt − xt) +KV

t (µ̂ẋt − ẋt), (3)

where KP
t and KV

t are the full stiffness and damping ma-
trices that are regulated in following the reference trajectory
of the underlying task.

IV. PLANAR DRAWING EXAMPLE

We begin with a toy example to illustrate the advantages
of our approach. We use a 2-dimensional drawing/writing
skill as shown in Fig. 3.

We incrementally demonstrate a sequence of letters, as
shown in Fig. 3(a). These demonstrations are in turn rep-
resented by an increasing number of Gaussians that are
added to model the new datapoints. Note that the Gaussian
mixture model parameters, the transition probabilities, and
the duration probability distributions are all estimated online,
thereby, avoiding any storage of the incoming datapoints.

Next the model is sampled stochastically and motions are
generated for each of the encoded letters. These are shown in
Fig. 3(b) in solid blue lines. After that, 3 new demonstrations
are incrementally presented to the model (see Fig. 3(c)).
The new demonstrations serve the purpose of connecting
the previous demonstrations. New Gaussians are added as
a result and the model parameters are updated accordingly.
After this, sampling of the model can produce a single
motion that contains all previous demonstrations (Fig. 3(d)),
while it was incrementally built online and interactively.

This highlights the flexibility of our approach as new
demonstrations can be added at will and online, without the
need to store any data or batch-retrain the model. This can
be particularly advantageous in a teleoperation setting as for
example adding new skills on-the-fly s is a desirable feature.

1

2

3

4
5

6

7
8

9

10

11

12

1314

x1
x2

x 3

#1
#2

#3

0.4

0.6

0.8

1

0.4
0.5

0.6

0

0.05

0.1

0.15

(a) Demonstrations & HSMM model

12
3

4

5

6
7 8 9

10

11

12

13
14

(b) Transition & duration probabilities

x1
x2

x 3

1

2

3

4
5

6

7
8

9

10

11

12

13
14

#1
#2

#3

0.4

0.6

0.8

1

-0.6
-0.5

-0.4

0

0.05

0.1

0.15

(c) Generated motions

Fig. 4. Overview of experimental trials of hot-stabbing with the Baxter robot. a) The six demonstrated motions in grey and the learned GMM. The
ellipsoids depict the equiprobable contour of one standard deviation. Note that this corresponds to the left arm of the robot, the operator’s side. b) The
transition and durations probabilities for each state. Note that only non-zero transitions are drawn while darker arrows represent larger probabilities. The
duration probabilities of each state are shown accordingly. c) Generated motions on the teleoperation side, the right arm of Baxter. Note that the GMM
is mirrored. The generated motions appear as solid blue lines. #1, #2 and #3 depict the locations of the hot-stab receptacles. Red solid lines represent
motions that start from randomized initial states. These simulate the effect of communication breakdown as an operator is teleoperating the arm. Once the
communication is down, the learned model can continue with the execution of the task and successfully perform the hot-stabbing.

V. EXPERIMENTAL SETUP

We use the two-armed Baxter robot as a working example
of a teleoperation system. Each of Baxter’s arms has 7 DoFs,
actuated by series-elastic actuators, enabling force/torque
control of the joints and the end-effector. We control Baxter’s
arms by compensating the effect of gravity, allowing us to
demonstrate motions kinesthetically. We use the left arm as
the operator’s side and the right arm as the teleoperated end.
The left arm is used for kinesthetic demonstrations of the
skill, while the right arm reproduces the motions that the
learned model generates [2]. This is used as a mock-up
platform within the DexROV project, where the arm will
later in the project be replaced by the ROV manipulator, and
the other arm will be replaced by an exoskeleton worn by
the teleoperator.

To demonstrate our approach, we chose one of the most
frequently executed tasks in underwater ROVs [20]. This is
the task of inserting a hot-stab plug to a hot-stab receptacle
as shown in Fig. 5. Hot-stabbing is used to provide hydraulic
actuation to most of the tools used in underwater facilities.
Hot-stabbing in the general case shares similarities with the
standard peg-in-the-hole task in robotics applications, that
we further simplify to a reaching task for these trials (see
Fig. 1 for our hot-stabbing mock-up).

VI. EXPERIMENTAL RESULTS

A user guides/teleoperates the robot, kinesthetically
demonstrating the hot-stabbing skill. 6 hot-stabbing demon-

Fig. 5. CAD model of a single-port high-flow standardised hot-stab and
and hot-stab receptacle. (Adapted from [21].)

1
2

3

4
5

6
7

8
9

10
11

12

1314

x1x2

x 3

#1
#2

#3

0.4

0.6

0.8

1

0.40.50.6

0

0.05

0.1

0.15

12
3

4

5

6
7 8 9

10

11

12

13
14

Fig. 7. Batch HSMM learning with EM yields a similar model to the one
learned online.

strations – 2 for each goal – are provided, starting from a
similar neutral joint angle configuration and reaching three
previously defined goal positions on the hot-stab panel mock-
up as shown in Fig. 1.

As the demonstrations are performed, the model of the
skill is being built. Fig. 4(a) shows the outcome of the
online learning procedure with the demonstrations shown in
grey. As new demonstrations are made available, the model
incrementally grows. The transition probabilities ai,j and
the state duration parameters µDi and ΣDi are incrementally
updated accordingly.

In order to evaluate the performance of the online learn-
ing estimate, we collected the data used during the online
learning. We then trained a model using batch learning with
EM, based on the collected data. The results are presented in
Fig. 7. We can see that the online learning estimate is very
close to the local optimum found by EM.

In the hot-stabbing experiment, a model with 14 Gaussians
was learned. Fig. 4(a) presents the learned model is shown
along with the six demonstrated motions in grey. We can see
that the Gaussians follow closely the evolution of the demon-
strated motions. Motions start around the area occupied by
the Gaussian numbered 1 and transition to either state 2, 10
or 6 as shown in Fig. 4(b). After this, motions evolve mainly
through 3 distinct paths. The demonstrated motions reach

Fig. 6. Kinesthetic teaching and motion generation for the hot-stabbing skill. Top row: The left arm of Baxter is used to teach the hot-stabbing motion.
Bottom row: Execution of the hot-stabbing motion, using the learned HSMM model, on the teleoperated side (i.e. Baxter’s right arm).

their end goals at states 5, 9 and 13, accordingly reaching the
receptacle goals numbered 1, 2 and 3. Note that the duration
probabilities of the start and end states are in general larger
in comparison to states that are traversed along the motions.
This is accurately represented in Fig. 4(b), showing the graph
connectivity and the duration probabilities for each state.

The model parameters are then exploited on the repro-
duction side for motion generation. The subsequent motion
control is handled locally on the remote side, while only the
model parameters need to be communicated at intermittent
time. Once this is done, the remote arm (right) starts to
follow the generated motion. The computed varying stiffness
and damping profiles of the controller allow the task to
be regulated in accordance with the required precision. In
essence this allows us to control lazily along task directions
that do not matter and accurately along the important task
directions, by following a minimal intervention principle
[22], see [2] for details.

Three motions starting from a neutral position and gener-
ated for the three mock-up receptacles are shown in Fig. 4(c)
in blue. In red, we show motions that start from random ini-
tial positions along a hot-stabbing movement. This is used to
simulate a failure in communication as the operator directly
teleoperates the remote arm. As soon as the communication
is lost, our system samples the learned model, starting from
the current state, and generates a motion that continues the
execution of the hot-stabbing task. Note that the model here
is mirrored for the teleoperated side, on the right arm of the
robot. Snapshots of the accompanying video1 are presented
in Fig. 6.

A. Evaluation

To evaluate the efficiency of the learned model we com-
pare the end position of the generated hot-stabbing motions
against the demonstrations. We chose this metric as the
position of the hot-stabbing plug at the end of the motion
should reach the receptacle entrance –up to some allowed
variance– while the path to this state can vary reasonably.
This is also apparent in the demonstrated motions (Fig. 4(a)).

We calculate the average end state from the set of demon-
strations per receptacle. We assume this as the ground truth
against which the generated motions’ outcomes are com-
pared. For each target receptacle, we sample 10 motions from

1Available at https://youtu.be/QsZkiTKh5DY.

the learned model starting from random initial states. We
report also the variance of the demonstrations per receptacle
for comparison. Fig. 8 shows the 30 hot-stabbing motions,
10 per receptacle target, that were generated by sampling the
learned model, beginning at randomized initial states.

Table I summarises the results of the evaluation trials.
From the RMSEs of the demonstrations we see that there
is only small variance in the end point of the kinesthetic
teaching motions. The motions that are generated by the
learned model are similarly accurate. We see that the hot-
stabbing motions accurately position the plug according to
the demonstrations. What is more, the outcome is highly
repeatable, as the very low variance value demonstrates. In
practice all motions to a particular receptacle converge to the
same end-point at the end of the motion regardless of the
starting state. As all reproduction RMSEs are bellow 1cm,
we conclude that all 30 trials are successful in hot-plugging
to the different receptacle targets.

VII. CONCLUSION

In this paper, we presented an online and incrementally
learned HSMM representation for encoding manipulation
tasks in semi-autonomous underwater teleoperation scenar-
ios. We demonstrated how such representation can be learned
from incremental demonstrations, without the need to store
demonstration data, and how motions can be regenerated
from the learned model. We evaluated the performance of

x1
x2

x 3

1

2

3

4
5

6

7

8

9

10

11

12

13
14

#1
#2

#3

0.4

0.6

0.8

1

-0.6
-0.5

-0.4

0

0.05

0.1

0.15

x1

x 2

0.4 0.6 0.8 1

-0.6

-0.5

-0.4

Fig. 8. Evaluation trials with 30 motions (10 per hot-stabbing receptacle,
drawn in blue lines), starting from randomized initial states.

https://youtu.be/QsZkiTKh5DY

TABLE I
RMSES OF MULTIPLE AVERAGED TRIALS, SEE SECTION VI-A FOR DETAILS AND DISCUSSION.

Receptacle Number #1 #2 #3
Reproductions, RMSE 0.77cm 0.74cm 0.99cm

our approach with a common ROV task and showed how
a learned model can reproduce motions with high accuracy
and repeatability. With the proposed approach, only a small
set of model parameters needs to be communicated from
the operator side to the teleoperated system, rendering our
approach robust to intermittent communication and latency.

In future work we aim to extend our model to multiple
skill primitives that can be assembled in series and in parallel.
Further work will investigate how the trained model can be
used to classify the operator’s intention and communicate
the appropriate skill activation to the teleoperated side. This
way we will be able to use the same learned model for
skill recognition and classification on one side, and on the
other side use it for semi-autonomous control of the robot,
exploiting the synthesis capability of the generative model.

ACKNOWLEDGEMENTS

The authors would like to thank Daniel Berio for his help
with the experimental trials. Source codes of all presented
work will be provided at the time of publication.

REFERENCES

[1] J. Gancet, D. Urbina, P. Letier, M. Ilzokvitz, P. Weiss, F. Gauch,
G. Antonelli, G. Indiveri, G. Casalino, A. Birk, M. F. Pfingsthorn,
S. Calinon, A. Tanwani, A. Turetta, C. Walen, and L. Guilpain,
“DexROV: Dexterous undersea inspection and maintenance in pres-
ence of communication latencies,” in IFAC Workshop on Navigation,
Guidance and Control of Underwater Vehicles (NGCUV), Girona,
Spain, 2015,

[2] A. Tanwani and S. Calinon, “Learning robot manipulation tasks with
task-parameterized semitied hidden semi-markov model,” Robotics
and Automation Letters, IEEE, vol. 1, no. 1, pp. 235–242, Jan 2016,

[3] B. Kulis and M. I. Jordan, “Revisiting k-means: New algorithms via
Bayesian nonparametrics,” in Proc. Intl Conf. on Machine Learning
(ICML), Edinburgh, Scotland, UK, 2012, pp. 1–8,

[4] A. Ijspeert, J. Nakanishi, P. Pastor, H. Hoffmann, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373, 2013,

[5] S. Calinon, Z. Li, T. Alizadeh, N. G. Tsagarakis, and D. G. Caldwell,
“Statistical dynamical systems for skills acquisition in humanoids,”
in Proc. IEEE Intl Conf. on Humanoid Robots (Humanoids), Osaka,
Japan, 2012, pp. 323–329,

[6] D. Lee and C. Ott, “Incremental motion primitive learning by physical
coaching using impedance control,” in Proc. IEEE/RSJ Intl Conf. on
Intelligent Robots and Systems (IROS), Taipei, Taiwan, October 2010,
pp. 4133–4140,

[7] D. Lee, C. Ott, and Y. Nakamura, “Mimetic communication model
with compliant physical contact in human-humanoid interaction,” Intl
Journal of Robotics Research, vol. 29, no. 13, pp. 1684–1704, 2010,

[8] A. Chan, E. A. Croft, and J. J. Little, “Modeling nonconvex workspace
constraints from diverse demonstration sets for constrained manip-
ulator visual servoing,” in Proc. IEEE Intl Conf. on Robotics and
Automation (ICRA), May 2013, pp. 3062–3068,

[9] C. Bowen and R. Alterovitz, “Closed-loop global motion planning
for reactive execution of learned tasks,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2014,

[10] D. Kulic, W. Takano, and Y. Nakamura, “Incremental learning, clus-
tering and hierarchy formation of whole body motion patterns using
adaptive hidden markov chains,” Intl Journal of Robotics Research,
vol. 27, no. 7, pp. 761–784, 2008,

[11] L. R. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,” Proc. IEEE, vol. 77:2, pp. 257–
285, February 1989,

[12] S.-Z. Yu and H. Kobayashi, “Practical implementation of an efficient
forward-backward algorithm for an explicit-duration hidden Markov
model,” IEEE Trans. on Signal Processing, vol. 54, no. 5, pp. 1947–
1951, 2006,

[13] S. Calinon, A. Pistillo, and D. G. Caldwell, “Encoding the time and
space constraints of a task in explicit-duration hidden Markov model,”
in Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS),
San Francisco, CA, USA, September 2011, pp. 3413–3418,

[14] A. Roychowdhury, K. Jiang, and B. Kulis, “Small-variance asymp-
totics for hidden markov models,” in Advances in Neural Information
Processing Systems (NIPS), 2013, pp. 2103–2111,

[15] J. Gauvain and C.-H. Lee, “Maximum a posteriori estimation for
multivariate gaussian mixture observations of markov chains,” Speech
and Audio Processing, IEEE Transactions on, vol. 2, no. 2, pp. 291–
298, Apr 1994,

[16] H. Zen, K. Tokuda, T. Masuko, T. Kobayasih, and T. Kitamura, “A
hidden semi-Markov model-based speech synthesis system,” IEICE
Trans. on Information and Systems, vol. E90-D, no. 5, pp. 825–834,
May 2007,

[17] G. Ganesh and E. Burdet, “Motor planning explains human behaviour
in tasks with multiple solutions,” Robotics and Autonomous Systems,
vol. 61, no. 4, pp. 362–368, 2013,

[18] S.-Z. Yu, “Hidden semi-markov models,” Artificial Intelligence, vol.
174, pp. 215–243, 2010,

[19] S. Calinon, D. Bruno, and D. G. Caldwell, “A task-parameterized
probabilistic model with minimal intervention control,” in Proc. IEEE
Intl Conf. on Robotics and Automation (ICRA), Hong Kong, China,
May-June 2014, pp. 3339–3344,

[20] A. Bleicher, “Gulf spill one year later: Lessons for robotics,”
Website: http://spectrum.ieee.org/robotics/industrial-robots/gulf-spill-
one-year-later-lessons-for-robotics, 2015,

[21] T. M. Technology, “http://www.tmtrov.com.au/tooling/standard-
tooling/tmt-single-port-high-flow-hot-stab,” Website, 2015,

[22] E. Todorov and M. I. Jordan, “A minimal intervention principle for co-
ordinated movement,” in Advances in Neural Information Processing
Systems (NIPS), 2002, pp. 27–34,

	Introduction
	Related work
	Approach
	Extension to HMM
	Extension to HSMM
	Sampling
	Motion Generation

	Planar Drawing example
	Experimental Setup
	Experimental Results
	Evaluation

	Conclusion
	References

