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point clouds, acquired by stereo
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Physical interaction: even non-
experts can teach iCub how to
assemble objects




Outline of the talk

Multimodal learning of the visual
appearance of objects (w/ Kinect)




Learning to identify objects

What should the robot do to learn
the objects appearance!

- intuitively, focus on the most “complex objects”

- manipulate the object to update its model sy

- choose the manipulations that provokes a new
object appearance

- get help from the human (teacher)

lvaldi et al, Object learning through active exploration, IEEE Trans Aut Ment Develop, 2014
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Observation alone is not enough

vision entities + collected views

The robot learns the objects
demonstrated by the human.

The robot has not yet learnt to
identify its body, hence

all entities are labeled by an
"unknown" category.

Pushing objects

Lyubova, Ivaldi, Filliat (2016) From passive to interactive object learning and recognition through
self-identification on a humanoid robot. Autonomous Robots, 40(1):33-57. 7



Active exploration of objects

action does not change the view
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Active exploration & social guidance

social exploration intrinsic motivation autonomous exploration
SGIM-ACTS ) '

exploration strategy

Vo

actor action object

robot asks human to show a new object robot pushes the object



Curiosity-driven exploration of objects

* Focusing on the objects that are not yet learned
* choosing the appropriate action for each object i

Exploration: the robot decides at each time
which object and which action
to test (it can also ask the teacher to help)

"show me the car” "| take the dog and

“i push the ball" make it fall"

ax
Hmevies

ball = yellow car = red bear — ... o e B
Intrinsic motivation

lvaldi, Nguyen, Lyubova, Droniou, Padois, Filliat, Oudeyer, Sigaud (2014) Object learning through
active exploration. IEEE Transactions on Autonomous Mental Development. 10



Better learning with action and interaction

entities, views

> The robot learns the objects
proprioception through manipulation.
>
The robot learns to
identify its body, hence
entities can be categorized as
oints o V‘J s : " "mow "
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Lyubova, Ivaldi, Filliat (2016) From passive to interactive object learning and recognition through
self-identification on a humanoid robot. Autonomous Robots, 40(1):33-57.



Better object recognition
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Lyubova, Ivaldi, Filliat (2016) From passive to interactive object learning and recognition through
self-identification on a humanoid robot. Autonomous Robots, 40(1):33-57. 12



Visual learning using the Kinect

* Calibration only once (if Kinect is fixed)

* High-resolution images with depth image
* Useful to retrieve the top (max_z) of each object and adapt the grasp
* Many feature points: better models

Lyubova, lvaldi, Filliat (2016) From passive to interactive object learning and recognition through
self-identification on a humanoid robot. Autonomous Robots, 40(1):33-57. 13



Can we do the same with the eyes’ cameras!

* |deal grasping of perfectly localised objects using the eyes’ cameras:
eye-hand calibration + object pose (vision) + object size/shape (vision)
+ correct grasp = success!

success!

Saut, lvaldi, Sahbani, Bidaud (2014) Grasping objects localised from uncertain point cloud data.
Robotics and Autonomous Systems, 62(12): 1742-1754. 14



Unfortunately, the cameras bring limitations...

* Error in object pose estimation is inevitable, particularly when the object
pose is estimated through low-resolution cameras

* Grasping is very sensitive to the accuracy of the object pose estimation
= failure!

inaccurate object pose estimation ey
failure!

Saut, lvaldi, Sahbani, Bidaud (2014) Grasping objects localised from uncertain point cloud data.
Robotics and Autonomous Systems, 62(12): 1742-1754. 15



Outline of the talk

Grasping objects localised by noisy
point clouds, acquired by stereo
cameras (w/ eyes)




Unfortunately, the cameras bring limitations...

* Extracting the point cloud from the stereo cameras of iCub

2D features (SURF) matched features




Grasping objects localised from noisy point clouds

* Problem: the point cloud from the stereo cameras has too few points to
run classical algorithms, such as the Iterative Closest Point (ICP, in PCL)

< !
ICP fails - needs more points, but the iCub cameras cannot provide more!

‘ : ‘.‘
I

20 points 8 points 9 points

* Small errors in the estimated pose may cause the planned grasp to fail
* Difficult to validate a grasp when tactile or force sensing is missing

= find grasps that are less sensitive to the pose uncertainty

* Intuition: exploit the uncertainty in the object pose estimation
* Not a pose, rather a distribution



Grasping objects localised from noisy point clouds

"= Proposed method:
grasp planning method that explicitly considers the pose
uncertainty to compute the best grasp configuration

=

| * Inputs: point cloud, object model
(primitive or 3D mesh)

reprojected reprojected * Step |: Estimate the probability
distribution of the object pose with
a set of particles/hypotheses

particles particles

* Step 2: Build a set of stable grasps
low score grasp high score grasp & compute Scores

Saut, Ivaldi, Sahbani, Bidaud (2014) Grasping objects localised from uncertain point cloud data. RAS 19



Grasping objects localised from noisy point clouds

* Step |: Estimate the probability distribution of the object pose and a set

of particles/hypotheses
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* a particle X is an hypothesis on the object pose

* we have m measured points (from the point
cloud)

* we can compute the probability of a candidate
object pose X given m measured points d

p(XId]9 ¢ o ,dm)

20



Grasping objects localised from noisy point clouds

camera view : matchi eft/r imag projected particles

* note: the most likely pose (blue) does not fit perfectly to the real object pose
= interest for reasoning with a distribution and not with a single best estimate

camera view “ _ -




Grasping objects localised from noisy point clouds

* Step 2: Build a set of stable grasps & compute scores

n=144 evaluations of grasps
- . compute probability of success S of the candidate grasp T:

(e l v \‘\ p(S ITgrasp) = % Z p(Xildy,...,dn)p(S ITgrasps Xi)

g o=l / \

probability of the object pose X given = {O=invalid, | =valid},

‘ ' ' w the observations d, computed at step | evaluated in simulation

5y

score = .44 (best) score = ().22




Grasping objects localised from noisy point clouds

* Each different pose & orientation of the object yield different grasps

likelihood

Reprojection of the particle set on the Grasp that was ranked first in the
left image likelihood to succeed




Grasping objects localised from noisy point clouds

* We use the probability distribution of the object pose to help
selecting the grasp that is more likely to succeed considering
the possible poses

* Pro:

hoint

e Cons:
* Neec
e Com

* [t is possible to plan a successful grasp direction from a sparse noisy

cloud acquired by (noisy) stereo cameras

* [t can help compensating the absence of tactile sensing in the fingers

a prior object model
butational time required to find the most suitable grasp (~seconds,

less t
=> |e

nan ICP in any case)
arning?

Saut, lvaldi, Sahbani, Bidaud (2014) Grasping objects localised from uncertain point cloud data.

Robotics and

Autonomous Systems, 62(12): 1742-1754. 24
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Physical interaction: even non-
experts can teach iCub how to
assemble objects

25



Teaching object manipulation via physical HRI

'L contacts
B by skin

lvaldi, Fumagalli, Randazzo, Nori, Metta, Sandini. Computing robot internal/external wrenches by inertial, tactile
and FT sensors: theory and implementation on the iCub. HUMANOIDS 201 |, Autonomous Robots 2012



Physical & social interaction

multimodal “behavior’ control

verbal/non-verbal signals

adaptation, _ control of
learning - interaction forces




Physical & social interaction

Human behavior «;arameters
model | toid tlfy

28



Ordinary people teach iCub how to assembly an object

|. How do people behave (gaze, touch, posture, ...) during physical interaction?
2. How much force do they apply on the robot?

3. Do these measures change depending on their expertise with robots, their
personality and attitudes?

Ivaldi, S.; Lefort, S.; Peters, J.; Chetouani, M.; Provasi, J.; Zibetti, E. (2016) Towards engagement models that consider individual factors in HRI: on the
relation of extroversion and negative attitude towards robots to gaze and speech during a human-robot assembly task. Int. Journal Social Robotics



Ordinary people teach iCub how to assembly an object

- 56 subjects
-age: 36,95%x14,32 (min 19, max 65)
- sex : |19 male, 37 females

Ivaldi, S.; Lefort, S.; Peters, J.; Chetouani, M.; Provasi, J.; Zibetti, E. (2016) Towards engagement models that consider individual factors in HRI: on the
relation of extroversion and negative attitude towards robots to gaze and speech during a human-robot assembly task. Int. Journal Social Robotics



Individual factors appear in the interaction
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lvaldi, S.; Lefort, S.; Peters, J.; Chetouani, M.; Provasi, |.; Zibetti, E. (2016) Towards engagement models that consider individual factors in HRI: on the
relation of extroversion and negative attitude towards robots to gaze and speech during a human-robot assembly task. Int. Journal Social Robotics




Assembly: personality effects on speech

Extroverts talk more to the robot

Variable Extroversion score
Utterance frequency r?>=0,318;p=0.017 <0.05
Utterance duration r?>= 0,321 ; p=0.016<0.05
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Ivaldi, S.; Lefort, S.; Peters, J.; Chetouani, M.; Provasi, J.; Zibetti, E. (2016) Towards engagement models that consider individual factors in HRI: on the
relation of extroversion and negative attitude towards robots to gaze and speech during a human-robot assembly task. Int. Journal Social Robotics



Assembly: personality effects on gaze

People with negative attitude towards robots look at the robot face
for shorter time, and more at the hands where the physical
Interaction occurs.
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Negative attitude towards robots
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Ivaldi, S.; Lefort, S.; Peters, J.; Chetouani, M.; Provasi, J.; Zibetti, E. (2016) Towards engagement models that consider individual factors in HRI: on the
relation of extroversion and negative attitude towards robots to gaze and speech during a human-robot assembly task. Int. Journal Social Robotics



Tactile signatures during teaching

faster
less force

Learning
effect

A

average duration:
246 sec (=4 min)

3rd trial



Demonstration from the expert

Right and left arm during the assembly
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Trials of the non-expert #62

Trial #2 Trial #3
Right and left arm during the assembly 1 SmOOther
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Trials of the non-expert #5
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The experiment seen by an artist :)
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Comics by Fiamma Luzzati - Le Monde - April 2014



Thank you!
Questions ?

CHARLES IS FOLLOWING THE EXPERIMENT
FROM THE COMPUTER, WHILE I AM HOLDING

THE RED BUTTON: IF SOMETHING GOES THE ATOMIC WAR IN
WRONG, I PUSH IT AND I SHUT DOWN SOME SENSE.. EHM..
EVERYTHING.

e Nionde

Comics by Fiamma Luzzati - Le Monde - April 2014



Postdocs wanted!

Open postdoc position for 2016 for the project
“Learning to walk with iCub” within the ERC Resibots

contacts:
serena.ivaldi@inria.fr, jean-baptiste.mouret@inria.fr
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