

Underactuation

Control over a limited set of forces. "To pull the book, we have to push on it"

> Horizon

Hybridness of contact

Different contact modalities (stick, slip, separation). "The hand contacts, then sticks, then slides, then sticks, ..., then grasps"

Combinatorial

Challenges
Underactuation and Hybridness

Locomotion

Everywhere, all the time.

Underactuation and Hybridness

Manipulation

Usually looking for open loop (i.e. implicit feedback) stable solutions.

[Lynch and Mason, 1996]

[Brock's gang, 2016]

Underactuation and Hybridness

Manipulation

What about closed-loop (i.e. explicit feedback)?

Underactuation and Hybridness

Manipulation

What about closed-loop (i.e. explicit feedback)?

Underactuation and Hybridness

Manipulation

Explicitly considered in trajectory optimization through contact.

- ✓ Either off-line or on-line with smoothed-out models.
- ✓ Usually inspired by locomotion solutions.

[Kumar et al., 2014]

Underactuation and Hybridness

Manipulation

What constitutes a good feedback controller for manipulation?

- ✓ Addresses underactuation and hybridness.
- ✓ Allows for sliding at contact.
- ✓ Cares less about temporal resolution.

Simple manipulation task

Control the motion of a sliding object using a single friction contact point

"Simple" Manipulation Problem

Incorporates:

Underactuation

- Only push, no pull.
- Force limited to friction cone.

Hybrid Dynamics

- Modes: Stick, Slide, Separate.
- Available forces depend on mode.

 c_n = Normal force along \overrightarrow{n}

 β_1 = Frictional force along \overrightarrow{d}_1

 β_2 = Frictional force along \overrightarrow{d}_2

d = Relative position of pusher to slider

Problem Formulation

Example: Line following

- Model Predictive Control approach.
- Minimize error over finite horizon.
- Enforce constraints on control inputs.

Problem Formulation

Possible Solution 1

Full contact mode enumeration (naïve approach)

- ✓ Tree of optimization programs.
- ✓ Scales exponentially due to contact hybridness.

Problem Formulation

Possible Solution 2

Complementarity formulations of contact

- ✓ Standard in simulation and trajectory planning.
- ✓ Avoids combinatorial nature.
- ✓ Non-convex constraints, and time consuming.

Problem Formulation

Possible Solution 3

Mixed-Integer Programming

- ✓ Efficient algorithm to prune the tree of solutions.
- ✓ Greatly reduced computational time.
- ✓ Still combinatorial form, does not scale well.

Problem Formulation

Possible Solution 4

Family of Modes

- ✓ Predefine primitive hybrid behaviors (each like a smooth controller).
- ✓ Eliminates combinatorial form.
- ✓ Only approximate.
- ✓ Need to determine off-line primitive behaviors.

Problem Formulation

Possible Solution 4

Example of a possible primitive mode in the family

- ✓ We fix the sequence of mode transitions.
- ✓ Optimization determines controls during each of those.

Example: Follow a line

Family of Modes in action (9 modes – 50Hz)

Example: Follow a line

Family of Modes in action (9 modes – 50Hz)

Example: Follow a line

Family of Modes in action (9 modes -50Hz - 30% noise in coeff. friction)

Example: Follow a line

Family of Modes in action (9 modes – 50Hz – 5mm noise in observations)

Real Experiments Does it work?

Real Experiments Line following with feedback

Real Experiments External Perturbations

Real Experiments External Perturbations 1/8 X

Real Experiments External Perturbations

Real Experiments External Perturbations 1/8 X

Example: Follow a target

Family of Modes in action (3 modes – 50Hz)

Example: Follow a target

Family of Modes vs. Mixed-Integer Programming

Mixed-Integer Programming (0.7s)

Family of Modes (0.02s)

Almost identical behavior \rightarrow Key for Manipulation.

Real Experiments Point tracking

Future Work

Application to Extrinsic Dexterity

Summary

- ✓ Pusher-Slider closed-loop control with single contact.
- ✓ Robust to perturbations in dynamics and observations.
- ✓ Idea: Family of primitive controllers for manipulation.

[Hogan and Rodriguez, "Feedback Control of the Slider-Pusher System: A Story of Hybrid and Underactuated Contact Dynamics", WAFR 2016]

